Contextualization of the E. Coli Lsr System: Relative Orthology, Relative Qs Activity, and Emergent Behavior

نویسندگان

  • David Nathan Quan
  • William E. Bentley
چکیده

Title of Document: CONTEXTUALIZATION OF THE E. COLI LSR SYSTEM: RELATIVE ORTHOLOGY, RELATIVE QS ACTIVITY, AND EMERGENT BEHAVIOR David Nathan Quan, Doctor of Philosophy, 2014 Directed By: Professor William E. Bentley Fischell Department of Bioengineering Within bacterial consortia there exist innumerable combinatorial circumstances, some of which may tip the scale toward pathogenicity, some of which may favor asymptomatic phenotypes. Indeed, the lines and intersections between commensal, pathogenic, and opportunistic bacteria are not always clean. As a foothold to mediate pathogenicity arising from consortia, many have puzzled at communication between bacteria. Primary among such considerations is quorum sensing (QS). Analogous to autocrine signaling in multicellular organisms, QS is a self-signaling process involving small molecules. Generally, QS activation is believed to have pleiotropic effects, and has been associated with numerous pathogenic phenotypes. The research herein focuses on autoinducer-2 (AI-2) based QS signaling transduced through the Lsr system. Produced by over 80 species of bacteria, AI-2 is believed to be an interspecies signaling molecule. Outside of the marine bacteria genera Vibrio and Marinomonas, the only known AI-2 based QS transduction pathway is the Lsr system. We sought to deepen the characterization of the Lsr system in contexts outside of the batch cultures in which it was originally defined. First, we interrogated E. coli K-12 W3110 Lsr system orthologs relative to the same strain’s lac system. Both systems are induced by the molecule which they import and catabolize. We searched for homologs by focusing on the gene order along a genome, as gene arrangement can bear signaling consequences for autoregulatory circuits. We found that the Lsr system signal was phylogenetically dispersed if not particularly deep, especially outside of Enterobacteriales and Pasteurellaceaes, indicating that the system has generally been conferred horizontally. This contrasts with the lac system, whose signal is strong but limited to a select group of highly related enterobacteria. We then modeled the Lsr system with ODEs, revealing bimodality in silico, bolstering preliminary experimental evidence. This bifurcated expression was seen to depend upon nongenetic heterogeneity, which we modeled as a variation of a single compound parameter, basal, representing the basal rate of AI-2 flux into the cell through a low flux pathway. Moreover, in our finite difference-agent based models, bimodal expression could not arise from spatial stochasticity alone. This lies in contrast with the canonical LuxIR QS system, which employs an intercellular positive feedback loop to activate the entire population. We examined the consequences of this contrast, by modeling both systems under conditions of colony growth using finite difference-agent based methods. We additionally investigated the confluence of Lsr signaling with chemotactic sensitivity to AI-2, which has been demonstrated in E. coli. Finally, the consequences of bimodality in interspecies interactions were assessed by posing two populations containing different Lsr systems against each other. While few natural consortia consist of only two interacting bacteria, these studies indicate that AI-2 based Lsr signaling may mediate a multitude of transitional intraspecies and interspecies bacterial dynamics, the specifics of which will vary with the context and the homologs involved. CONTEXTUALIZATION OF THE E. COLI LSR SYSTEM: RELATIVE ORTHOLOGY, RELATIVE QS ACTIVITY, AND EMERGENT BEHAVIOR By David Nathan Quan Dissertation submitted to the Faculty of the Graduate School of the University of Maryland, College Park, in partial fulfillment of the requirements for the degree of Doctor of Philosophy 2014 Advisory Committee: Professor William E. Bentley, Chair Associate Professor Michael P. Cummings Associate Professor Nam Sun Wang Associate Professor Adam Hsieh Assistant Professor Ganesh Sriram © Copyright by David Nathan Quan 2015

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mathematical model of LsrR-binding and derepression in Escherichia coli K12

Quorum sensing (QS) enables bacterial communication and collective behavior in response to self-secreted signaling molecules. Unlocking its genetic regulation will provide insight towards understanding its influence on pathogenesis, formation of biofilms, and many other phenotypes. There are few datasets available that link QS-mediated gene expression to its regulatory components and even fewer...

متن کامل

Local and Global Gene Regulation Analysis of the Autoinducer-2 Mediated Quorum Sensing Mechanism in Escherichia Coli

Title of Document: LOCAL AND GLOBAL GENE REGULATION ANALYSIS OF THE AUTOINDUCER-2 MEDIATED QUORUM SENSING MECHANISM IN ESCHERICHIA COLI Christopher Matthew Byrd, Doctor of Philosophy, 2011 Directed By: Dr. William E. Bentley, Professor and Chair, Department of Bioengineering The term ‘quorum sensing’ (QS) is used to define a population density based communication mechanism which uses chemical s...

متن کامل

Quorum Sensing Desynchronization Leads to Bimodality and Patterned Behaviors

Quorum Sensing (QS) drives coordinated phenotypic outcomes among bacterial populations. Its role in mediating infectious disease has led to the elucidation of numerous autoinducers and their corresponding QS signaling pathways. Among them, the Lsr (LuxS-regulated) QS system is conserved in scores of bacteria, and its signal molecule, autoinducer-2 (AI-2), is synthesized as a product of 1-carbon...

متن کامل

Evaluation of Antimicrobial Activity of Oudemansiella sp (Basidiomycetes)

Antimicrobial activity of different culture extract of Oudemansiella sp grown on liquid medium (MYGP) were tested. Different fungi (C. albicans, C. lipolytica, Saccharomyces cervisiea, Cladosporium herbarum, and Aspergillus niger) and bacteria (Microccocus luteus, E. coli, Staphylococcus aureus, and Staphylococcus epidermidis) were used as test organisms. Various antimicrobial assay metho...

متن کامل

Evaluation of Antimicrobial Activity of Oudemansiella sp (Basidiomycetes)

Antimicrobial activity of different culture extract of Oudemansiella sp grown on liquid medium (MYGP) were tested. Different fungi (C. albicans, C. lipolytica, Saccharomyces cervisiea, Cladosporium herbarum, and Aspergillus niger) and bacteria (Microccocus luteus, E. coli, Staphylococcus aureus, and Staphylococcus epidermidis) were used as test organisms. Various antimicrobial assay metho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015